

Distributed Static System IRST

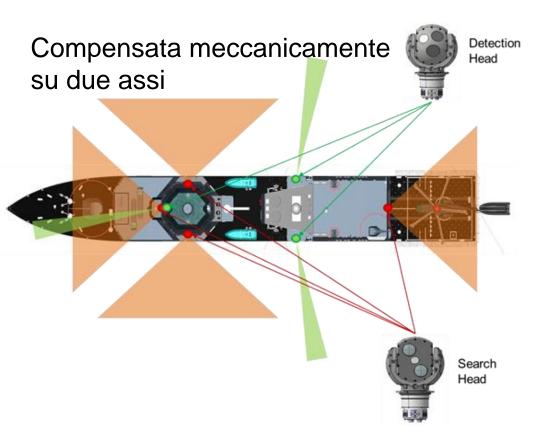
Gianni Barani Leonardo SpA, Divisione ETN Campi Bisenzio (FI)

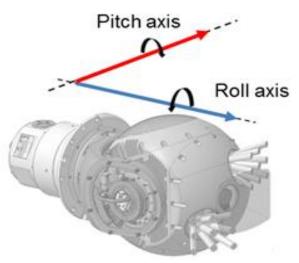
SISTEMI IRST: RICHIESTE OPERATIVE

Agire come RADAR panoramico per:

- Scoperta di missili sea-skimmer
- Scoperta di natanti in avvicinamento veloce
- Scoperta di bersagli aerei a bassa quota e a bassa segnatura
- Immagini ad alta qualità notte/giorno della situazione attorno alla nave
- Detection & Tracking «Silent mode» quando i Radar devono essere spenti

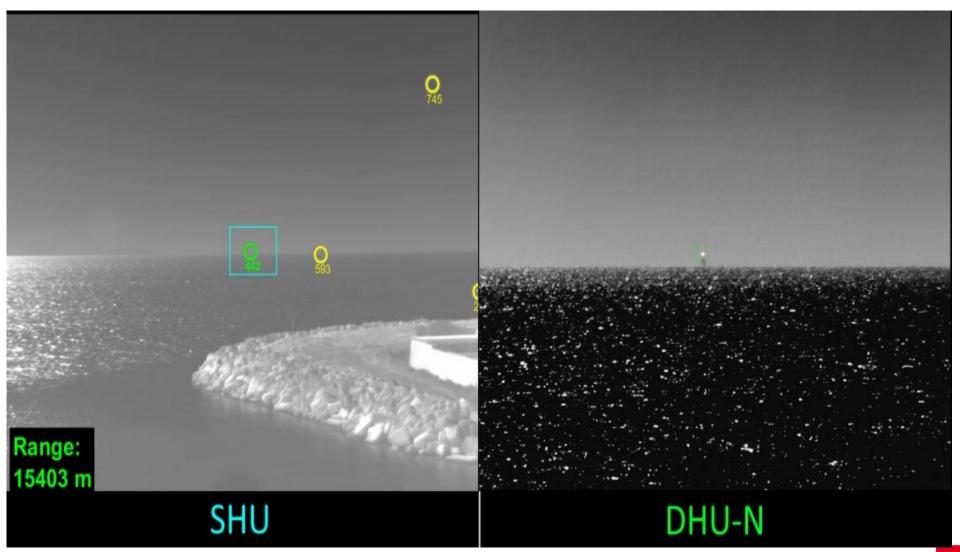
IRST a sensori distribuiti


Vantaggi	Richieste tecnologiche
Si eliminano gli angoli ciechi	Necessarie installazioni compatibili con gli altri apparati nave
Utilizzo di più teste aumenta l'efficacia del sistema	Tolleranze di allineamento spinte
Possibile ranging passivo	•
Grande campo di vista verticale garantito dalla dimensione dell'array (FPA)	Array di elevata omogeneità spaziale e stabilità
Alta frequenza di frame	Grande potenza di processing
Modularità garantisce migliore affidabilità	


CONFIGURAZIONE INSTALLATIVA

Detection Head

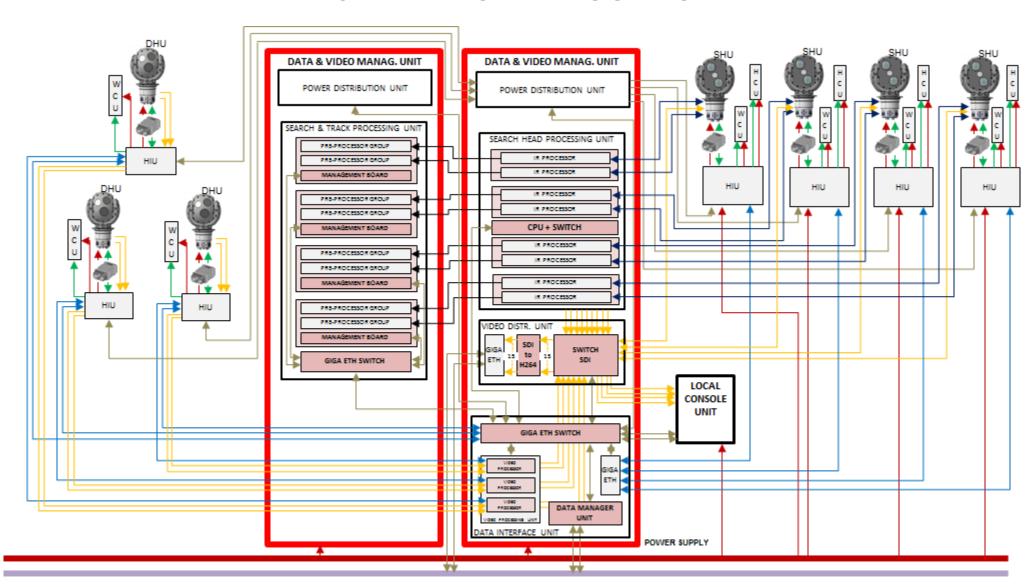
Search Head


Roll & Pitch compensati meccanicamente Yaw compensato elettronicamente

Sistema DSS-IRST

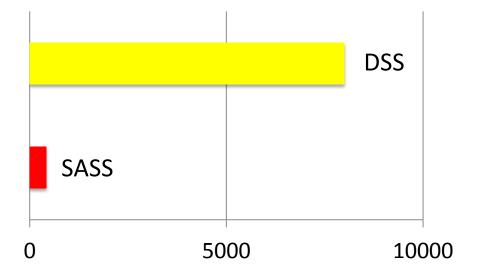
DSS-IRST VERSO IRST A SCANSIONE

Funzione	DSS-IRST	IRST II° Generazione				
Ranging attivo	Effettuato per mezzo dei Laser Range Finder (Nd:YAG eye safe 1570 nm) inseriti nei sensori DHU Non prevista funzione di Ranging					
Ranging passivo	Effettuato per mezzo dell'uso combinato dei sensori SHU e DHU su minaccia					
IR Search	Ricerca effettuata automaticamente sulla scena panoramica di $360^\circ_h \times > 30^\circ_v$	Ricerca effettuata automaticamente sulla scena panoramica di 360° _h × 5/7° _v				
IR Track	Effettuato automaticamente sulle immagini delle SHU con generazione di tracce con preclassificazione	Effettuato automaticamente sulle immagini LW e MW con generazione di tracce con preclassificazione				
Modi operativi	 Il sistema è adattabile agli scenari operativi: blue water, littoral, harbour/anchored 	Il sistema possiede solo lo scenario blue water				


DSS-IRST VERSO IRST a Scansione

Funzione	DSS-IRST	IRST II° Generazione
Visione	IR: Otto sensori 1280×1024	1 LWIR 288 x 6 TDI
panoramica/ perimetrale	IFOV< 1 mrad	1 MWIR 288 x 6 TDI IFOV< 0.5 mrad
	Scan rate rate 50 Hz	Scan rate rate 1/2 Hz
	Monospettrale	Bispettrale
	VISIBILE: 7 camere	No VISIBILE
Visione settoriale	Effettuata con 11 camere IR+ 7 camere Visibili	Nessuna Visione Settoriale
Video Tracking	Automatico fino a tre bersagli contemporanei (uno per sensore DHU). Designazione automatica da traccia SHU, da CMS o designazione manuale.	
Registrazione delle immagini	Registrazione del video prodotto dai sensori DHU e SHU	Registrazione del video prodotto

ARCHITETTURA DSS-IRST



POTENZA DI PROCESSING

Rapporto fra DSS-IRST e SASS

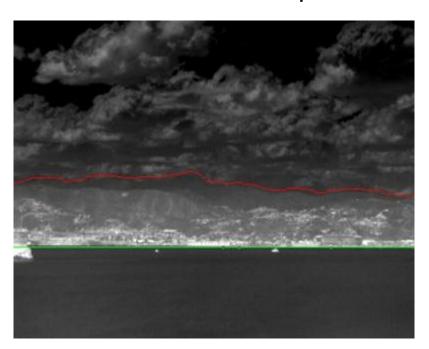
Throughput (Mb/s)

throughput di ingresso di 8000 Mb/s:

1280*1024*16*8*50

5 video full HD throughput di 3955 Mb/s:

1920*1080*16*5*25


ALGORITMI ADATTATI ALLO SCENARIO

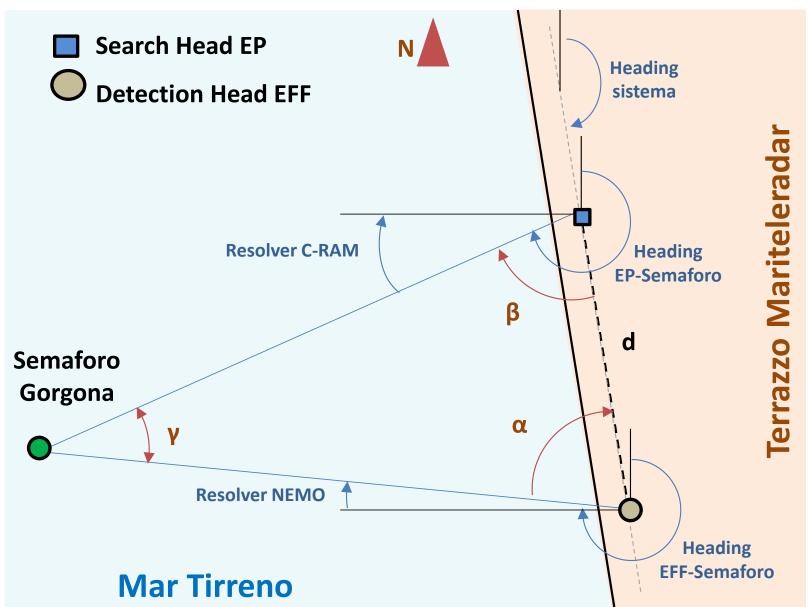
- Blue water
 - Capacità di scoperta di target distanti e a bassa segnatura IR (seaskimmers), mediante frame average/ algoritmi Track Before Detect
- Littoral
 - Capacità di scoperta nei confronti di bersagli veloci da breve distanza (missili da costa, jet sky, gommoni...), mediante alto frame rate (50 Hz)
- Anchorage/Harbour
 - Le Search Head sono poste in depressione (-20°) per controllo della situazione intorno alla nave

ALGORITMI ADATTATI ALLO SCENARIO

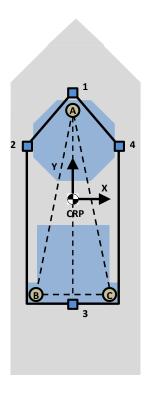
- Mappe GPS in linea
 - Identificazione di zone di cielo, mare, costa
 - Algoritmi per separazione delle aree sull'immagine
 - Identificazione di specifiche aree di clutter

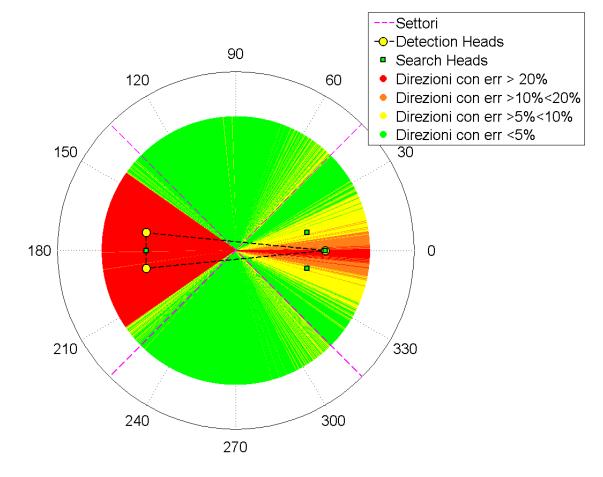
Adattamento ad aree specifiche:

- Algoritmi di pre-processing
- Gestione dei Falsi allarmi

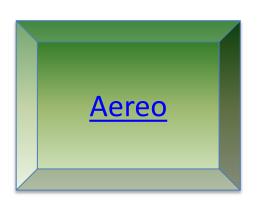

ALGORITMI ADATTATI ALLO SCENARIO LITTORAL

RANGING PASSIVO

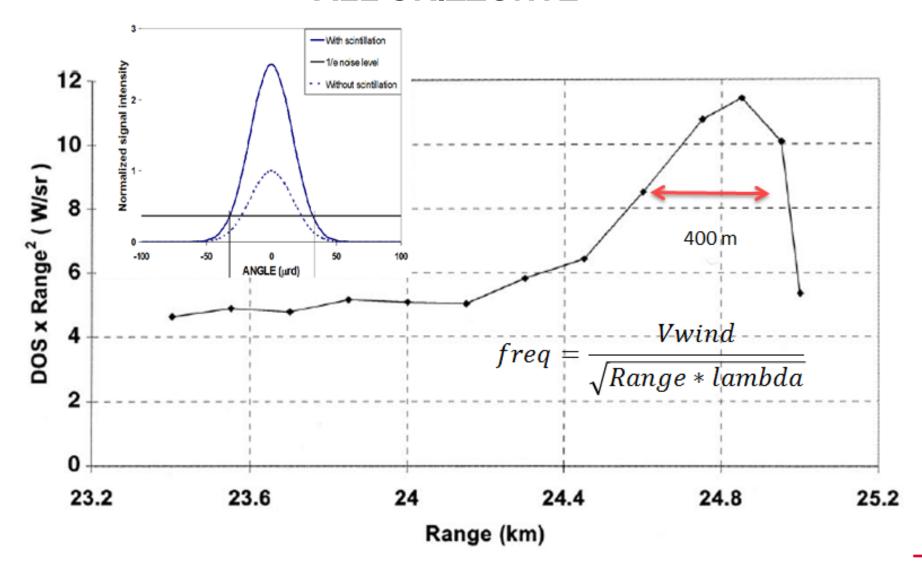




RANGING PASSIVO



ALGORITMI ADATTATI ALLO SCENARIO

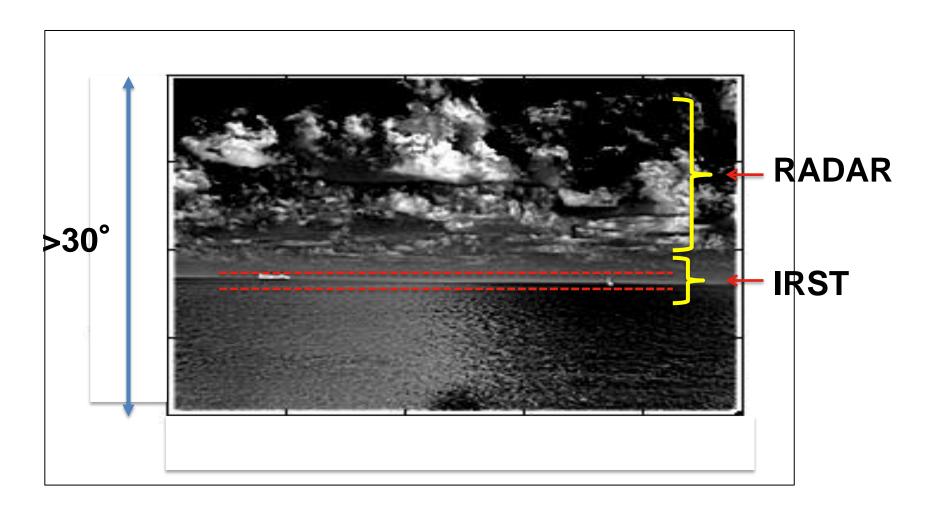

RANGING PASSIVO

GUADAGNO D'INTENSITÀ PER UN POINT TARGET ALL'ORIZZONTE

INTEGRAZIONE CON IL RADAR

EO dipende dalle condizioni atmosferiche ma ha il vantaggio della:

precisione, discriminazione, antistealth, resistenza alle contro misure, qualità dell'immagine


L'area di maggior sinergia è rappresentata dalla correlazione delle tracce usando quelle di uno per indirizzare l'altro

Efficienza operativa di RADAR & EO è ben superiore a quanto ottenibile con un sistema basato solo sul RADAR

INTEGRAZIONE CON IL RADAR

CONFRONTO CONTRASTO IRST/ RADAR

	ESEMPIO PORTATE TEORICHE PER UN IRST in Banda M						
Tipo target	Portata in chiaro	Portata con pioggia 4 mm/hr	Contrasto su pioggia 4 mm/hr	Contrasto su Clutter di mare SeaState=1	Contrasto su Clutter di mare SeaState=5	Contrasto su litorale	Contrasto su nuvola
Missile (fronte) 0.35 W/sr			dati non consistenti	> 9 dB	> 9 dB	> 9 dB	< -1 dB
Aereo Caccia 10 W/sr			dati non consistenti	> 20 dB	> 20 dB	> 20 dB	< 12 dB
Piccola imbarcazione 1.25 W/sr			dati non consistenti	> 14 dB	> 14 dB	> 13 dB	

	ESEMPIO PORTATE TEORICHE						
	PER UN RADAR DI SORVEGLIANZA /SCOPERTA in Banda X						
Tipo target	Portata in chiaro	Portata con pioggia 4 mm/hr	Contrasto su pioggia 4 mm/hr	Contrasto su Clutter di mare SeaState=1	Contrasto su Clutter di mare SeaState=5	Contrasto su litorale rcs =2000 m²	Contrasto su nuvola
Missile RCS = 0.5 m ²			<-5 dB pol. Lin > 5 dB pol. Circ	> 25 dB	> 8 dB	<-35 dB	> 20 dB (TBV)
Aereo Caccia RCS = 2 m ²			< 0 dB pol. Lin 7 dB pol. Circ.	> 40 dB	> 20 dB	<-25 dB	> 20 dB (TBV)
Piccola imbarcazione RCS = 5 m ²		OIZ THII POR ONO	≈ 0 dB pol. Lin 10 dB pol. Circ.	> 50 dB	> 35 dB	<-20 dB	> 20 dB (TBV)

RAPPRESENTAZIONE DELLE IMMAGINI

- Ogni camera della SH copre un FOV 45° x >30° con una escursione (FOR) da -20° a +70°
- Angoli di vista di così grandi 45° richiedono analisi per la scelta del tipo di rappresentazione
- Operazioni sui valori di intensità dei pixel da presentare a schermo:
 - Ricampionamento
 - Equalizzazione
 - Blending

RAPPRESENTAZIONE CILINDRICA

$$x_p = k \alpha$$
$$y_p = k \tan(\delta)$$

RAPPRESENTAZIONE RETTILINEA

$$x_p = f \tan(\alpha)$$
$$y_p = f \frac{\tan(\delta)}{\cos(\alpha)}$$

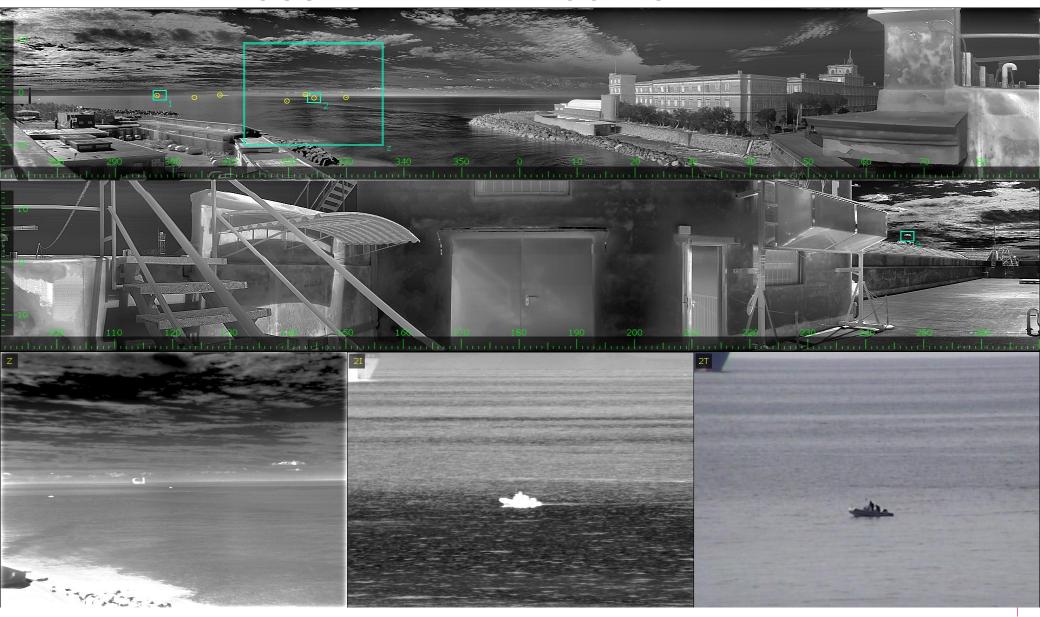


IMMAGINE FULL HD A 360°

POSSIBILE INTERFACCIA UTENTE

CONCLUSIONI

- II DSS-IRST è un sistema distribuito che supera i limiti installativi dei sistemi a scansione
- E' un sistema modulare che permette l'uso di algoritmi adattati allo scenario
- L'utilizzo di teste ottiche distribuite permette di effettuare il ranging passivo
- L'uso di FPA ad elevato numero di pixel permette di ottenere immagini full HD

PROPAGAZIONE IN AMBIENTE MARINO

ESTINZIONE

BLUR

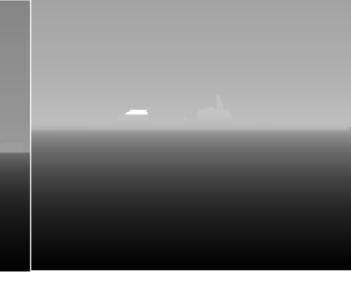
BEAM WANDERING

SCINTILLAZIONE

TURBOLENZA

ASTD

EFFETTI DELLA ASTD



$$ASTD = 0 \circ C$$

$$ASTD = +10 \circ C$$

20 km

2*1.5°

La Force de L'innovation

- ⇒Apparition of mirage (ASTD < 0°C)
- Compression of target image (ASTD growing)
- Variation of optical horizon
- ⇒Limitation of the target detected form (ASTD < 0°C)</p>